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Abstract This paper presents the discussion of a more complete definition of the frac-
tional modification of an monocyclic enzyme cascade suggested, but not discussed, by
Varon et al. (Bull Math Biol 68(7):1461-1493, 2006) as the quotient of the sum of all
forms of the modified protein, i.e. the free one and the intermediate complex converter
enzyme of the original protein-modified protein, between the initial concentration of
the target protein. From this general equation, obtained under three assumptions nec-
essary to linearize the set of differential equations describing the kinetic of the system,
we derive, as particular cases, other simpler expressions, by applying additional sim-
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plifying assumptions, which are, therefore, of a smaller range of validity. We discuss
the relationships between the kinetic parameters and concentrations needed for the
fulfillment of both the necessary and unnecessary assumptions. The goodness of the
analysis was tested by using the shape in the steady state of the simulated time progress
curves obtained by numerical integration. Seven arbitrarily chosen examples differing
in one or more of the values of the concentrations and/or kinetic parameters have been
used to support the results.

Keywords Fractional modification · Monocyclic enzyme cascades · Modified
protein · Target protein

1 Introduction

There are many processes of cell regulation where a protein is reversibly and covalently
modified by the enzyme catalyzed transfer of a group from a donor to a specific amino
acid residue located at the active site of the acceptor [1]. These covalent modification
and demodification reactions are catalyzed by a specific converter enzyme, often pro-
tein kinases and phosphoprotein phosphatases [2]. The modification of the protein by a
converter enzyme and the opposite reaction, in which the modified protein or peptide is
“demodified” by another converter enzyme, form a monocyclic enzyme cascade. The
converter enzymes for both modification and demodification reactions also undergo
a modification process (activation or inactivation) induced by an allosteric effector.
Monocyclic enzyme cascades are ubiquitous in biological systems.

A very important steady-state parameter related with monocyclic enzyme cascades
is the fractional modification of the interconvertible protein, once it has reached this
state, i.e. the ratio between the concentration of the modified interconvertible enzyme at
the steady state and the total interconvertible enzyme concentration. This parameter is
often the basis for defining important steady state regulatory properties of monocyclic
cascades, such as signal amplification, amplitude and sensitivity [3–8] or the transient
time of the interconvertible protein and the mean regulation rate of the cascade [9].

The steady state fractional modification of the monocyclic enzyme cascades has
been extensively studied, more or less under assumptions allowing the derivation
of symbolic equations which are simplest when more assumptions are made [3,9–
14]. In all these contributions the fractional modification refers to the fraction of the
molecules of the free modified protein. Varon et al. [12] suggested a wider and more
complete definition of the fractional modification including all forms of the modified
protein, the free one and the intermediate complex converter enzyme of the original
protein-modified protein. They gave the general expression of fractional modification
hereby defined, denoted as f∞, for the monocyclic cascades, but no discussion was
made concerning the usual definition which was extensively studied by these authors.
Obviously, both definitions coincide in those cases in which it is assumed that the
intermediate complex mentioned above is negligible, but this assumption, although
frequently used by some authors [15], as we will see, is unnecessary to reach an
analytical expression of the fractional modification and limits the applicability of this
expression.
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Scheme 1 Scheme used for the
study of the four different
monocyclic cascades

Ea

o-I

Ra

m-I

This paper has, as a starting point, the general expression of f∞ given by Varon et
al. [12] and from this expression discusses: (1) the validity of this analytical expression
and the fulfillment of the assumptions under which the expression was derived; (2) The
possible additional assumptions that simplify the general expression for f∞ yielding
simplified expressions and (3) the applicability of the general equation for the complete
fractional modification and its simplified expressions.

2 Material and methods

Steady state analytical solutions for the cyclic enzyme cascade in Scheme 1 under
the linearizing Assumptions 1–3 were found using the specific software wREFERASS
[16] for the acquisition of the steady state equations of enzyme reactions in which the
different interconversions between the enzyme forms are of first or pseudofirst order.
Numerical integration and the corresponding simulated progress curves were obtained
from the set of differential Eqs. (8)–(11), using arbitrary sets of rate constants and
initial concentration values. This numerical solution was found by the Runge-Kutta-
Fehlberg algoritm [17,18] using the software WES implemented in Visual C++ 6.0
[19]. Progress simulated curves in Fig. 1 are directly given by WES. Plots in Fig. 2
have been obtained using the SigmaPlot Scientific Computing System for Windows
version 8.02 (SPSS Inc.). Both wREFERASS and WES software are disposable in the
link http://oretano.iele-ab.uclm.es/~BioChem-mg/software.php.

3 The monocyclic cascades model

We will study the four different monocyclic cascades in the Scheme 1, where Ea and
Ra are the active forms of the converter enzymes E and R, respectively and o − I
and m − I are the original and modified forms, respectively, of the interconvertible
protein, I . Scheme 1 yields four different Schemes [3–15], which we will denote as
1(a), 1(b), 1(c) and 1(d), according to how the active enzyme forms Ea and Ra are
related with the corresponding inactive forms of E and R, Ei and Ri , through the
modifying action (activating or deactivating) of the allosteric effectors e1 and e2 of
E and R, respectively. In Table 1 we show the possible interactions between both the
active and inactive forms of the enzymes E and R and their corresponding effectors
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Fig. 1 Simulated time course curves of the different species involved in reactions [I] and [II] of Scheme 2,
corresponding to case 7 in Table 3, obtained by numerical integration of the corresponding set of differential
Eqs. (8)–(11) assuming constant [Ea ] and [Ra ], i.e. by adding to the above set of differential equations
the following two ones: d[Ea ]/dt = 0 and d[Ra ]/dt = 0. Note that Assumption a is not observed. At the
steady state, in this case, [o − I ]∞ = [o − I.Ea ]∞ as expected from Eqs. (12) and (13) and the values of
the rate constants and initial concentrations involved in them
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Fig. 2 Time course of the quotients [Ea ][o − I ]/[o − I.Ea ] and [Ra ][m − I ]/[m − I.Ra ] obtained
from the results in Fig. 1. Note that in the dissociation of the complex o − I.Ea the rapid equilibrium
approach does not prevail (there is no coincidence of [Ea ][o − I ]/[o − I.Ea ] with K f ) neither at the
transient phase nor at the steady state in which the quotient above is the value of Km f . Nevertheless, in
the dissociation of the complex m − I.Ra the equilibrium is reached from approximately 100 s, being the
quotient [Ra ][m − I ]/[m − I.Ra ] slightly higher than the equilibrium constant Kr that, therefore, is also
approximately equal to Kmr . The values of Km f , Kmr K f and Kr obtained both from the values of the
rate constants used for this example and the definitions given in Eqs. (4)–(7) are, respectively, 10, 2.75, 5
and 2.5 µM
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Table 1 Possible interactions between both the active and inactive forms of the enzymes E and R in
Schemes 1 and their corresponding effectors

Scheme Step in which the active converter enzyme Ea
is involved previously to its reaction with o− I

Step in which the active converter enzyme Ea
is involved previously to its reaction with
m − I

1(a) Ei + e1
k1�

k−1

Ea Ri + e2

k
′
1�

k
′
−1

Ra

1(b) Ei + e1
k1�

k−1

Ea Ri

k
′
1�

k
′
−1

Ra + e2

1(c) Ei

k1�
k−1

Ea + e1 Ri + e2

k
′
1�

k
′
−1

Ra

1(d) Ei

k1�
k−1

Ea + e1 Ri

k
′
1�

k
′
−1

Ra + e2

Scheme 2 Set of reaction steps
in Scheme 1 where the
interconvertible protein is
involved

for each of the Schemes 1(a)–1(b). From here, we will write Schemes 1 when referring
to the common features of the four Schemes 1(a)–1(d).

The detailed set of reaction steps in Scheme 1 where the interconvertible protein is
involved is shown in Scheme 2.

3.1 Notation

The notation in this work is chosen to coincide in part with that used in previous
contributions [3,9–12,20] in order to facilitate the comparison that is made in the
Results and Discussion section. Part of the notation has been introduced in the text
above; further notations follow:

[I]: Concentration of the target interconvertible enzyme I
[o − I ], [o − I.Ea], [m − I ], [m − I.Ra] : Concentrations at any time, t , of the

enzyme species o − I, o − I.Ea, m − I and m − I.Ra , respectively. From the mass
conservation law it is observed that:

[I ] = [o − I ] + [o − I.Ea] + [m − I ] + [m − I.Ra] (at any reaction time) (1)

[o − I ]0, [o − I.Ea]0, [m − I ]0, [m − I.Ra]0 : Initial concentrations, i.e. at the
reaction time t = 0, of enzyme species o−I, o−I.Ea, m−I and m−I.Ra , respectively.
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Note that [I ] coincides with [o− I ]0 if, as assumed in the present analysis, it is observed
that [o − I.Ea]0 = [m − I ]0 = [m − I.Ra]0 = 0.

[o − I ]∞, [o − I.Ea]∞, [m − I ]∞, [m − I.Ra]∞ : Constant concentrations of
enzyme species o − I, o − I.Ea, m − I and m − I.Ra , respectively, at the steady
state, i.e.: [o − I ]∞ = lim

t→∞[o − I ]; [o − I.Ea]∞ = lim
t→∞[o − I.Ea]; [m − I ]∞ =

lim
t→∞[m − I ]; [m − I.Ra]∞ = lim

t→∞[m − I.Ra].
f∞ : Fraction of the interconvertible protein, I , that, in the steady state, was trans-

formed into the enzyme forms containing m − I . In the cases of Schemes 1 it is given
by:

f∞ = [m − I ]∞ + [m − I.Ra]∞
[I ] (2)

In the following we will refer to f∞ merely as the complete fractional modification.
This complete fractional modification was introduced by Varon et al. [12] and its
expressions were given, but no discussion of it has yet been carried out. In the literature
about cyclic cascades, the fractional modification, which will denote here as F M∞,
is defined as:

F M∞ = [m − I ]∞
[I ] (3)

Obviously, the fractional modification thus defined approximately coincides with
that in Eq. (2) in those cases, and only in those cases, in which [m − I.Ra]∞ �
[m − I ]∞.

K1: Equilibrium constant corresponding to the reversible reaction step where Ei , e1

and Ea are involved, defined as: K1 = k−1
k1

K
′
1 : Equilibrium constant corresponding to the reversible reaction step where

Ri , e2 and Ra are involved, defined as: K
′
1 = k

′
−1

k
′
1

Km f : Michaelis constant of the forward reaction in step [I], i.e.:

Km f = k−2 + k3

k2
(4)

Kmr : Michaelis constant of the reverse reaction in step [II], i.e.:

Kmr = k
′
−2 + k

′
3

k
′
2

(5)

K f : Equilibrium constant corresponding to the dissociation of the complex o
− I.Ea , i.e.:

K f = k−2

k2
(6)

Kr : Equilibrium constant corresponding to the dissociation of the complex m
− I.Ra , i.e.:

Kr = k
′
−2

k
′
2

(7)
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Table 2 Assumptions 1, 2 and 3 (in the following Assumptions 1–3) are the minimal of those usually
accepted in analysis of monocyclic enzyme cascades to their corresponding set of differential equations
describing their kinetic behavior becoming linear. In the last column the global result of the Assumptions
1–3 is shown

Scheme Assumption 1 Assumption 2 Assumption 3 Global result of
Assumptions
1–3

Rapid equilibrium of
the activation or inac-
tivation reaction of the
converter enzymes

[o − I.Ea ] �
[Ea ], [Ei ] and
[m − I.Ra ] �
[Ra ], [Ri ]

The concentrations of
the allosteric effectors
are maintained at con-
stant levels

Constance of [Ea ] and
[Ra ] and their expres-
sions

(a)
K1 = [Ei ][e1]

[Ea ]
K

′
1 = [Ri ][e2]

[Ra ]

[E] � [Ei ] + [Ea ]
[R] � [Ri ] + [Ra ]

[e1] constant

[e2] constant

[Ea ] = [E][e1]
K1+[e1]

[Ra ] = [R][e2]
K

′
1+[e2]

(b)
K1 = [Ei ][e1]

[Ea ]
K

′
1 = [Ri ][Ra ][e2]

The same as in
Scheme (a)

The same as in
Scheme (a)

[Ea ] = [E][e1]
K1+[e1]

[Ra ] = K
′
1[R]

K
′
1+[e2]

(c)
K1 = [Ei ][Ea ][e1]
K

′
1 = [Ri ][e2]

[Ra ]
The same as in

Scheme (a)
The same as in

Scheme (a)

[Ea ] = K1[E]
K1+[e2]

[Ra ] = [R][e2]
K

′
1+[e2]

(d)
K1 = [Ei ][Ea ][e1]
K

′
1 = [Ri ][Ra ][e2]

The same as in
Scheme (a)

The same as in
Scheme (a)

[Ea ] = K1[E]
K1+[e2]

[Ra ] = K
′
1[R]

K
′
1+[e2]

αm f : Ratio between the rate constants k3and the Michaelis constant Km f , i.e.:
αm f = k3

Km f

αmr : Ratio between the rate constants k
′
3 and the Michaelis constant Kmr , i.e.:

αmr = k
′
3

Kmr
α f : Ratio between the rate constants k3 and the equilibrium constant K f , i.e.:

α f = k3
K f

αr : Ratio between the rate constants k
′
3 and the Michaelis constant Kr , i.e.: αr = k

′
3

Kr

3.2 Assumptions

It is very useful to make some reasonable assumptions which permit us to obtain
approximate analytical solutions for [o− I ]∞, [o− I.Ea]∞, [m − I ]∞, [m − I.Ra]∞
in Schemes 1. We have performed part, but not all, of the assumptions made by other
authors to obtain their steady state equations [3,10]. The three assumptions made are
indicated in Table 2.

Assumptions 1–3 predict that [Ea] and [Ra] remain approximately constant from
the onset of the reaction being their expressions for Schemes 1 given on the last column
in Table 2.
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4 Theory

The constancy of [Ea] and [Ra] allows the enzyme cascade be described only by the
reactions in Scheme 2 whose corresponding set of differential equations are:

d[o − I ]
dt

= −k2[Ea][o − I ] + k−2[o − I.Ea] + k
′
3[m − I.Ra] (8)

d[o − I.Ea]
dt

= −(k−2 + k3)[o − I.Ea] + k2[o − I ][Ea] (9)

d[m − I ]
dt

= −k
′
2[Ra][m − I ] + k

′
−2[m − I.Ra] + k3[o − I.Ea] (10)

d[m − I.Ra]
dt

= −(k
′
−2 + k

′
3)[m − I.Ra] + k

′
2[m − I ][Ra] (11)

At the steady state, [o − I ], [o − I.Ea], [m − I ], [m − I.Ra] reach the constant
values [o − I ]∞, [o − I.Ea]∞, [m − I ]∞ and [m − I.Ra]∞. To find the complete
fractional modification, f∞, of Schemes 1 at the steady state we need to know [m− I ]∞
and [m − I.Ra]∞ and then to divide their sum by [I], according to Eq. (2). It will also
be interesting below to know also the expressions of [o − I ]∞ and [o − I.Ea].

The derivation of equations which gives us the enzyme species concentrations
and/or the rate of any ligand species at the steady state for any reaction mechanism is a
task which necessarily has to be carried out in most of the kinetic analysis of all enzyme
reactions. Done by hand using the usual well-known procedures, this becomes tedious,
time-consuming and prone to human errors even for reaction mechanisms which are
not too complex, as the one here analyzed. This is the reason of the considerable
number of contributions dealing with the implementation of adequate software which
allows obtaining either the steady state equations [21–32] or both the transient and
steady state equations [21–23,33–36]. We have used the software wREFERASS [16]
with the following results:

[o − I ]∞ = k
′
2k

′
3(k−2 + k3)[Ra][I ]

Den
(12)

[o − I.Ea]∞ = k2k
′
2k

′
3[Ea][Ra][I ]

Den
(13)

[m − I ]∞ = k2k3(k
′
−2 + k

′
3)[Ea][I ]

Den
(14)

[m − I.Ra]∞ = k2k
′
2k3[Ea][Ra][I ]

Den
(15)

where:

Den = k2k3(k
′
−2 + k

′
3)[Ea] + k

′
2k

′
3(k−2 + k3)[Ra] + k2k

′
2(k3 + k

′
3)[Ea][Ra] (16)

If in Eq. (2) we take into account Eqs. (12)–(16), we have, after some convenient
rearrangement:
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Table 3 Set of concentrations and initial concentrations, arbitrarily chosen, for different cases we will use
to support our results

Case [I] (M) [Ea ] (M) [Ra ] (M) k2 (M−1s−1) k−2 (s−1) k3 (s−1) k′
2 (M−1s−1) k′−2 (s−1) k′

3 (s−1)

1 10−7 10−5 5 × 10−6 107 100 1 2 × 107 200 2

2 10−7 10−8 5 × 10−8 108 100 1 4 × 108 800 2

3 10−7 10−8 2 × 10−8 108 100 100 4 × 108 800 200

4 10−7 10−5 2 × 10−6 108 100 100 4 × 108 800 200

5 10−7 10−5 5 × 10−8 108 100 1 4 × 108 800 2

6 10−6 10−5 5 × 10−6 107 100 1 2 × 107 200 2

7 10−7 10−5 2 × 10−6 4 × 103 0.02 0.02 4 × 104 0.1 0.01

f∞ =
[

1 + αmr [Ra]
αm f [Ea] + [Ra]

Kmr
+ αmr [Ra]

k3

]−1 (
1 + [Ra]

Kmr

)
(17)

5 Results and discussion

In this paper we discuss the fractional modification, given by Eq. (17), for the important
monocyclic reversible enzyme cascades shown in Scheme 1. To the derivation of Eq.
(17) one needs Assumptions 1–3, therefore, it is valid whenever these assumptions are
observed. It is to be noted that, according to Eq. (17) f∞ is [I ]-independent.

Equation (17) is valid for the four different specific Schemes 1(a)–1(d) arising from
Scheme 1 and Table 1. These schemes differ in the way the active enzymes Ea and
Ra are related with the corresponding effectors. Thus, in Schemes 1(a) and 1(b) Ea

proceeds from the activation by e1 of Ei , whereas in Schemes 1(c) and 1(d) Ea is
inactivated by e1 to give Ei . Likewise, in Schemes 1(a) and 1(c) Ra proceeds from
the activation by e2 of Ri , whereas in Schemes 1(b) and 1(d) Ra is inactivated by e2
to give Ri.

The dependence of Eq. (17) on [Ea] and [Ra] is the same for the four Schemes 1
[Schemes 1(a)–1(b)]. Nevertheless they formally differ when the expressions for [Ea]
and [Ra] are replaced by those indicated in Table 2 for each of the different Schemes 1
so that now the corresponding equations for each of the Schemes 1(a)–1(d) show
a different dependence of f∞ on [E], [e1], [R] and [e2]. The obtaining of these
specific equations for each of the four enzyme cascades mentioned, using the procedure
commented above, is obvious. Thus, as an example, for Scheme 1(a) the resulting
equation is, after some ease rearrangement:

f∞ =
[

1 + αmr [R][e2]
K

′
1 + [e2]

(
K1 + [e1]

αm f [E][e1] + 1

k
′
3

+ 1

k3

)]−1 (
1 + [R][e2]

Kmr (K
′
1 + [e2])

)

(18)
So as not to unnecessarily increase the length of this paper, we do not give the corre-
sponding expressions for the other three enzyme cascades.
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Table 4 Values of the parameters αm f , αmr and Kmr involved in Eq. (17) and the corresponding f∞-value
obtained from this equation, for each of the cases 1–7 in Table 1 [the k3-value involved in Eq. (17) was
already given in Table 3 for each case]

Case αm f αmr Kmr f∞ Eq. (17) F M∞ Eq. (20)

1 9.90 × 104 1.98 × 104 1.01 × 10−5 0.429 0.287

2 9.90 × 105 1.00 × 106 2.01 × 10−6 0.168 0.164

3 5.00 × 107 8.00 × 107 2.50 × 10−6 0.239 0.237

4 5.00 × 107 8.00 × 107 2.50 × 10−6 0.484 0.269

5 9.90 × 105 1.00 × 107 2.01 × 10−6 0.949 0.926

6 9.90 × 104 2.00 × 105 1.01 × 10−5 0.429 0.287

7 2.00 × 103 3.64 × 103 2.75 × 10−6 0.704 0.407

In the last column the value of a fractional modification, denoted as F M∞, for cases 1–7, defined in
an alternative, simpler way explained below, is also given. Note that for cases 1 and 6, differing only in
their [I ]-values we have the same result. This is due to the fact that expressions for f∞ and F M∞ are
[I ]-independent

In Table 4 we show the values of the kinetic parameters corresponding to cases 1–7
of Table 3 involved in Eq. (17).

5.1 Another more simple definition for the steady state fractional modification of
monocyclic enzyme cascades

The different regulatory properties of the monocyclic enzyme cascade, such as the sig-
nal amplification, amplitude and sensitivity [5–7,37–40] and other regulatory prop-
erties suggested by Varon et al. [9] are based on a simpler definition of the steady
state fractional modification of monocyclic cascades, which we denote as F M∞ to
distinguish it from the fractional modification, f∞, studied here, as:

F M∞ = [m − I ]
[I ] (19)

which, taking into account Eqs. (14), (16) and (19), becomes:

F M∞ =
[

1 + αmr [Ra]
αm f [Ea] + [Ra]

Kmr
+ αmr [Ra]

k3

]−1

(20)

Note that, from Eqs. (17) and (20), the following relationships between f∞ and
F M∞ is:

f∞ = F M∞
(

1 + [Ra]
Kmr

)
(21)

i.e., it is always observed that f∞ > F M∞, as expected from the respective definitions.
Definition in Eq. (19) only refers to the fraction of molecular species m − I . The
definition used in this paper is more general because it refers to all forms of the

123



2452 J Math Chem (2014) 52:2442–2458

modified protein, i.e. to m − I and m − I.Ra species. Varon et al. [12] carried out
an extensive analysis of the fractional modification of the same monocyclic enzyme
cascades studied here, but based exclusively on the definition in Eq. (20). These same
authors suggested the definition of the fractional modification given in Eq. (2), but
then they omitted the corresponding analysis, which we have developed in the present
contribution.

For the same Schemes 1 the results of defining the fractional modification as in
Eq. (17) or as Eq. (20) may be very different. In Table 4 we have included the val-
ues obtained for the fractional modification of cases 1–7 using both equations. This
differences makes it advisable to revisit the regulatory properties of the cascades on
the basis of the expression for the complete fractional modification, f∞, and thus to
obtain new expressions for these properties.

5.2 Particular cases of general Eq. (17)

General Eq. (17) for the fractional modification, f∞, has been derived under Assump-
tions 1–3. Nevertheless, the steady state kinetics of monocyclic enzyme cascades has
been extensively studied under Assumptions 1–3 and other additional ones which are
not strictly necessary for the derivation of analytical equations and which are, in most
cases, unwarranted [3,11,12]. The unnecessary additional assumptions have, appar-
ently, three advantages: (1) if they are used previously to attempt the derivation of
analytical solutions, they facilitate this derivation; (2) the final form of these analyti-
cal solutions are simpler and more manageable; (3) if these additional assumptions are
made after the obtaining of an analytical solution, then this may become considerably
reduced and, therefore, as said above, more manageable. The most frequent additional
assumptions used are the following Assumptions a and b.

Assumption a: Both reversible steps in reactions [I] and [II] from Scheme 2 are in
equilibrium, i.e.:

k3

k−2
� 1 and

k
′
3

k
′
−2

� 1 (22)

Relationship (22) must be fulfilled simultaneously and if they are keeping in mind
in Eqs. (4)–(7), we have that this Assumption a yields:

Km f � K f ; Km f � K f ; αm f � α f ; αmr � αr (23)

Assumption b: The concentrations of the enzyme-converter protein complexes are
negligible in comparison with the concentration of the active and inactive enzymes,
i.e.:

[o − I ]∞ + [o − I.Ea]∞ + [m − I ]∞ + [m − I.Ra]∞ � [o − I ]∞ + [m − I ]∞ (24)

For the fulfillment of Assumption b, it is necessary and sufficient that the four
following relationships are observed:
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[o − I.Ea]∞ � [o − I ]∞; [m − I.Ra]∞ � [o − I ]∞;
[o − I.Ea]∞ � [m − I ]∞; [m − I.Ra]∞ � [m − I ]∞ (25)

If in relationship (25), arising from Assumption b, Eqs. (12)–(15) are taken into
account, the following four conditions (26) must be simultaneously fulfilled:

[Ea]
Km f

� 1; αm f [Ea]
k

′
3

� 1; αmr [Ra]
k3

� 1; [Ra]
Kmr

� 1 (26)

If, previously to Assumption b, Assumption a is made, then the relationship (26)
corresponding to Assumption b must be expressed as:

[Ea]
K f

� 1; α f [Ea]
k

′
3

� 1; αr [Ra]
k3

� 1; [Ra]
Kr

� 1 (27)

In Eq. (17) we may introduce either only Assumption a, only Assumption b or both
Assumptions a and b.

Effect of introducing Assumption a in Eq. (17).
If in Eq. (17) we insert relationship (23) corresponding to Assumption a, it becomes:

f∞ =
[

1 + αr [Ra]
α f [Ea] + [Ra]

Kr
+ αr [Ra]

k3

]−1 (
1 + [Ra]

Kr

)
(28)

Effect of introducing Assumption b in Eq. (17).
If in Eq. (17) we insert relationship (27) corresponding to Assumption b, it becomes:

f∞ =
[

1 + αmr [Ra]
αm f [Ea]

]−1

(29)

Effect of introducing in Eq. (17) simultaneously both Assumptions a and b
Finally, if both Assumptions a and b are inserted in Eq. (17), then we directly obtain:

f∞ =
[

1 + αr [Ra]
α f [Ea]

]−1

(30)

Comparison of the expressions of the fractional modification, f∞, given by the
general and the particular ones emanating from it.

In Table 5 we give the values of k3/k−2, k
′
3/k

′
−2, [Ea]/Km f , αm f [Ea]/k

′
3,

αmr [Ra]/k3, [Ra]/Kmr for each of the cases 1–7 in Table 3 pointing out if Assump-
tions a and/or b are observed and in Table 6 we give, for each of these same cases, the
values obtained for f∞ using general Eq. (17) and its particular Eqs. (28)–(30). Note
that when only Assumption a, only Assumption b or both of them are observed, Eqs.
(28)–(30) furnish good results, but no in the contrary case.

As an example, in Fig. 1 we show the simulated progress curves, from t=0, for
all of the enzyme species involved in the cascade for the case 7 in Table 3. These
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Table 5 Values of the relationship involving rate and/or equilibrium constants and/or concentrations given
in Eqs. (22) and (26) determining whether Assumptions a and b are observed or not

Case k3/k−2 k
′
3/k

′
−2 [Ea ]/Km f αm f [Ea ]/k

′
3 αmr [Ra ]/k3 [Ra ]/Kmr Is Assumption

a observed?
Is Assumption

b observed?

1 0.010 0.010 0.990 0.495 0.990 0.495 Yes No

2 0.010 0.025 0.099 0.005 0.050 0.025 Yes Yes

3 1.000 0.250 0.005 0.003 0.016 0.008 No Yes

4 1.000 0.250 9.901 4.950 1.995 0.998 No No

5 0.010 0.025 0.099 0.005 0.050 0.025 Yes Yes

6 0.010 0.010 0.990 0.495 0.990 0.495 Yes No

7 1.000 0.100 1.000 2.000 0.364 0.727 No No

Table 6 Values of f∞ given by simplified Eqs. (28)–(30). To allow comparison with the corresponding
true results for f∞, these ones are indicated, on the 3rd column, extracted from Table 4 and repeated here
for ease

Case Assumptions a or b
observed, if any,
according to Table 5

f∞ from Eq. (17) f∞ from Eq. (28) f∞ from Eq. (29) f∞ from Eq. (30)

1 Only Assumption a is
observed

0.429 0.429 0.500 0.500

2 Both Assumptions a and
b are observed

0.168 0.169 0.166 0.167

3 Only Assumption b is
observed

0.239 0.333 0.238 0.333

4 Neither Assumption a nor
Assumption b are
observed

0.484 0.476 0.758 0.833

5 Both Assumption a and b
are observed

0.949 0.949 0.995 0.995

6 Only Assumption a is
observed

0.429 0.429 0.500 0.500

7 Neither Assumption a nor
Assumption b are
observed

0.704 0.750 0.733 0.833

progress curves have been obtained from the set of differential Eqs. (8) and (11) to
which must be added the following two: d [Ea]/dt = 0 and d [Ra]/dt = 0 because
the consequence of Assumptions 1–3 is that both [Ea] and [Ra] remain constant during
the reactions progress.

From Fig. 1, it is obvious that neither [o− I.Ea]∞ nor [m − I.Ra]∞ is negligible in
comparison with both [o − I ]∞ and [m − I ]∞, i.e. that Assumption b is not fulfilled.
To see the lack of fulfillment of Assumption a we have plotted, from the simulated
progress curves in Fig. 1, curves in Fig. 2. Note that although Kmr is near to Kr , Km f

it is very different from K f so that Assumption a is not observed.
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In Table 6 we compare the results given by general Eq. (17) and the simplified Eqs.
(28)–(30). Note the high level of concordance between the true result given by Eq.
(17) and that of the corresponding simplified equation when Assumption a, b or both
are observed.

5.3 Some additional remarks about general Eq. (17) and simplified Eqs. (28)–(30)

In this paper we have discussed the steady state fractional modification defined as
in Eq. (17), which is a more complete definition than the previous one. The most
important contribution of this paper is that in it one analyses Eq. (17), arising from
Eq. (2) and Eqs. (12)–(15), in a triple sense: (1) by checking its validity using numer-
ical integration, (2) by comparing it with another previous, more limited equation
for the fractional modification [12] and (3) showing the way to obtain, from Eq.
(17), different equations when Assumption a, Assumption b or both Assumptions a
and b are simultaneously used, Eqs. (28)–(30) respectively. One of these particular
equations, Eq. (28), is obtained here the first time. One of them, Eq. (29), was also
obtained by Varon et al. [12] as a particular case of Eq. (20) when only Assump-
tion b was used. Finally, Eq. (29) was already obtained in an individualized analy-
sis of the monocyclic cascades when Assumption a and b, together with Assump-
tions 1–3, were used from the beginning of the analysis [3] and also by Varon et
al. [12] as a particular cases of Eq. (20) when in it both Assumptions a and b were
inserted.

Both sets of assumptions, necessary Assumptions 1–3 required to derive Eq. (17),
and additional unnecessary Assumptions a and b used to obtain Eqs. (28)–(30) either
as particular cases of Eq. (17) or in an individualized analysis, require certain restric-
tive relationships involving rate and/or equilibrium constants and/or concentrations as
those above given for each of these assumptions. Obviously, the necessary Assump-
tions 1–3 are indispensable, but the use of the additional, unnecessary Assumptions
a and b has great inconveniences which outweigh the above mentioned advantages
of their use. One of these inconveniences is that the simpler equations Eqs. (28)–
(30) resulting are only applicable to the enzyme system under study, if the mentioned
relationships are fulfilled. The greater the number of additional assumptions used to
derive the kinetic equations or to simplify them once obtained, the more they move
away from the real system for which such equations are intended, i.e. the range of
applicability of the equations diminishes and they become less accurate.

Simplified Eqs. (28)–(30) are only applicable if the assumptions under which they
have been obtained are observed. Thus, Eq. (28) is only applicable only if Assumptions
1–3 and a are observed, Eq. (29) is applicable only if Assumptions 1–3 and b are
observed and Eq. (30) is applicable only if Assumptions 1–3 and a and b are observed.
The problem is that it is impossible to know a priori what assumptions are observed
in a particular enzyme cascade under study. Obviously, the probability of the results
for the kinetic behavior of the system being correct will be greater if we use directly
Eq. (17), which is less demanding and more general than Eqs. (28)–(30) which are
very demanding and more limited. Obviously, simplified Eqs. (28)–(30) could be
applied to cases to which they should not be applied but then, the results would be
inaccurate.
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As above commented for general Eq. (17), particular Eqs. (28)–(30), are valid for
any of the four different Schemes 1(a)–1(d) shown in Table 1. If one wants to express
the fractional modification as a function of [E], [R], [e1] and [e2] then both [Ea] and
[Ra] must be merely replaced by the corresponding expressions in Table 2 for each
of the four cascades 1(a)–1(d), resulting now in different expressions of the fractional
modification for each of the four Schemes. As an example, Eq. (29) for Scheme 1(c)
becomes:

f∞ =
[

1 + αmr [R][e2](K1 + [e1])
αm f K1[E](K

′
1 + [e2])

]−1

(31)

Let us finally point out, as a summary of this section, that the relevance of the
steady state fractional modification is largely justified in the previous contributions for
monocyclic enzyme cascades ([9–12]). As explained here, in these enzyme systems,
part of the original enzyme is modified yielding a free modified enzyme and the
intermediate complexes modified enzyme-activating enzyme of the modified enzyme
and this fact is indicated in the corresponding reaction mechanisms. Nevertheless, this
intermediate was not yet taken into account in the obtaining of the expression of the
steady state fractional modification, i.e. of the fraction of the original enzyme which
has been transformed into a modified enzyme. The neglection of this intermediate is
generally based on the biologically unjustified assumption that its concentration at the
steady state is much lower than that of the free modified enzyme. This assumption
has, as immediate results, a more easily derivation of the expression for the fractional
modification and a simpler final formula. But this assumption has the disadvantage that
it doesn’t correspond to the system under study, as is obvious from Figs. 1 and 2. Here
we circumvent this limiting situation giving a general expression, Eq. (17), for the
fractional modification which includes, as some of its different particular cases those
situations in which the concentration of the intermediate mentioned can be reasonably
neglected Eqs.(28) and (30).
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